Time-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels

author

Abstract:

The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequencies (slow oscillatory motion, small channel size, or large effective viscosity), the plug-like velocity profiles similar to steady-state electroosmotic flow are observed at nearly all times. At very high dimensionless frequencies, the flow is shown to be restricted to a thin region near the channel wall, while the bulk fluid remains essentially stationary. Velocity distributions of pseudoplastics and dilatants may be widened at low values of the dimensionless frequency depending on the dimensionless zeta potential; at high dimensionless frequencies, however, both fluids represent enhanced velocity magnitudes with the dimensionless zeta potential. In the case of high shear rate and/or suddenly-started flows, pseudoplastics tend to produce higher velocities than dilatants. These two kinds of fluids may produce same velocity profiles relying on the value of the dimensionless zeta potential as well as the ratio of their flow behavior indexes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

full text

Analysis of Pseudo-Turbulence Flow Induced by Bubble Periodic Formation in Non-Newtonian Fluids

Laser Doppler Velocimetry (LDV) has been employed to determine pseudo-turbulence characteristics of the flow field around bubble train forming in non-Newtonian caboxymethylcellulose (CMC) aqueous solution at low gas flow rate condition. The Reynolds stress and turbulent intensity of the liquid were investigated by means of Reynolds time-averaged method. The experimental results show that ax...

full text

Numerical Study of Non-Newtonian Flow Through Rectangular Microchannels

A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...

full text

Electroosmotic shear flow in microchannels.

We generate and study electroosmotic shear flow in microchannels. By chemically or electrically modifying the surface potential of the channel walls a shear flow component with controllable velocity gradient can be added to the electroosmotic flow caused by double layer effects at the channel walls. Chemical modification is obtained by treating the channel wall with a cationic polymer. In case ...

full text

Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels

Dynamic characteristics of electroosmosis of a typical non-Newtonian liquid in a rectangular microchannel are investigated by using numerical simulations. The non-Newtonian behavior of liquids is assumed to obey the famous power-law model and then the mathematical model is solved numerically by using the finite element method. The results indicate that the non-Newtonian effect produces some not...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 5

pages  706- 714

publication date 2016-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023